Applications
- Flow over wings
- planes
- birds
- insects
- 2D viscous flows
- Fluid mixing
- How jellyfish eat
- pollutants in ocean
- Planetary transport
- Newton's laws for each celestial body
- Inverted pendulum
- Rockets
- Disease modeling
Approaches:
- write equations of motion as [[Partial Differential Equations (PDEs)|PDEs]]
- create computational domain of cells, discretize PDEs into [[Ordinary Differential Equations (ODEs)|ODEs]]
## Example
Seattle weather
Three types of weather:
1. Rainy
2. Cloudy
3. Nice
If rainy or cloudy, 50% it'll be the same conditions tomorrow, 25% nice, 25% the other
If nice, 50% it will be rainy or cloudy tomorrow
Represent as vectors
Today:
$
\mathbf{x}_{today}=\begin{bmatrix}p_{rainy}\\p_{nice}\\p_{cloudy}\end{bmatrix}=\begin{bmatrix}1\\0\\0\end{bmatrix}
$
Tomorrow:
$
\mathbf{x}_{tomorrow}=\mathbf{A}\mathbf{x}_{atoday}
$
Create model:
$
\mathbf{A}=\begin{bmatrix}p_{rainy,\,rainy}&p_{nice,\,rainy}&p_{cloudy,\,rainy}\\p_{rainy,\,nice}&p_{nice,\,nice}&p_{cloudy,\,nice}\\p_{rainy,\, cloudy}&p_{nice,\,cloudy}&p_{cloudy,\,cloudy}\end{bmatrix}=\begin{bmatrix}0.5&0.5&0.25\\0.25&0&0.25\\0.25&0.5&0.5\end{bmatrix}
$
$
\mathbf{x}_{tomorrow}=\begin{bmatrix}0.5\\0.25\\0.25\end{bmatrix}
$