A sufficiently-smooth function can expressed as an infinite sum of the function's derivatives Named after Brook Taylor # Definition $ \begin{align} f(x)&\approx\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n\\ &\approx f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)+\dots+\frac{f^{(n)}}{n!}(x-a)^n \end{align} $ The [[Maclaurin Series]] is a Taylor series centered at $x=0$