# Engineering Stress
## Axial Stress
Load applied on an area direct along the axis of the object:
$
\sigma=\frac{P}{A_0}\:\left[\frac{\text{N}}{\text{m}^2}\right]=[\text{Pa}]
$
- $P$ - load
- $A_0$ - cross-sectional area of the specimen before deformation
$
P=\int dF=\int_A\sigma\,dA
$
Axial stress distribution assumed to be uniform across area, acts through the centroid of the object.
## Shear Stress
Load applied on an area perpendicular to the axis of the object:
$
\tau_\text{ave}=\frac{P}{A}
$
Cannot be assumed to be uniformly distributed.
## Axial Loading on an Oblique Plane
Decompose $P$ into normal component $F$ and tangential component $V$:
$
F=P\cos\theta\quad V=P\sin\theta
$
$
\sigma=\frac{F}{A_\theta}\quad\tau=\frac{V}{A_\theta}
$
$
A_\theta=A_0/\cos\theta
$
$
\sigma=\frac{P}{A_0}\cos^2\theta\quad\tau=\frac{P}{A_0}\sin\theta\cos\theta
$
Naming convention:
$
\begin{array}{c}
\tau_{xy}\\
\;\;\swarrow\;\searrow\\
\mbox{perpedicular surface}\quad \mbox{direction of component}
\end{array}
$