- Have function of two variables $f(x_1, x_2)$ - can separate into functions of one variable $f(x_1)+f(x_2)$ - Assumptions - obj. function is concave - constraint functions are convex - all functions are separable - Two cases: 1. Piecewise linear function of single variable ![[case1.png]] 2. Approximate nonlinear function as piecewise linear function ![[case2.png]] ## Non-concave Objective Function Slopes increase as $x_j$ increases $ \begin{align} x_{j2} = 0 \quad &\text{when} \quad x_{j1} < u_{j1} \\ x_{j3} = 0 \quad &\text{when} \quad x_{j2} < u_{j2} \end{align} $ Introduce binary variables: $ \begin{align} q_1 = \begin{cases} \end{cases} \end{align} $