Projection of a vector onto another
- measure of how much two vectors point in the same direction
Results in a ***scalar***
$
\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta
$
$
\vec{a}=3\hat{i}+5\vec{j},\quad\vec{b}=4\hat{i}+8\hat{j}
$
$
\vec{a}\cdot\vec{b}=(3\hat{i}+5\vec{j})\cdot(4\hat{i}+8\hat{j})=12+40 = 52
$
- Can be used to find angle between two vectors
$
\cos\theta=\frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}=\frac{52}{\sqrt{3^2+5^2}\sqrt{4^2+8^2}}\approx\frac{52}{52.15}
$
$
\theta=\cos^{-1}\bigg(\frac{52}{52.15}\bigg)\approx4.40^\circ
$
- Also ***associative***
$
\vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a}
$
- and ***distributive***
$
x\vec{a}\cdot\vec{b}=\vec{a}\cdot x\vec{b}=x(\vec{a}\cdot\vec{b})
$