# Definition
Flow field $\vec{V}=\left(V_1,\,V_2\right)$ that is:
1. Steady
$
\frac{\partial\vec{V}}{\partial t}=0
$
2. Incompressible
$
\nabla\cdot\vec{V}=0\rightarrow
\frac{\partial V_1}{\partial x}+\frac{\partial V_2}{\partial y}=0
$
3. Irrotational
$
\nabla\times\vec{V}=0\rightarrow
\frac{\partial V_2}{\partial x}+\frac{\partial V_1}{\partial y}=0
$
These conditions are satisfied automatically if $\vec{V}=\nabla\varphi$ for a real-valued potential $\varphi$ that satisfies [[Laplace's equation]] $\nabla^2\varphi=0$
#