# Time - backward: transient second order - bounded - CoEuler - CrankNicolson: transient second order - uses a blending factor $\psi$ - $\psi = 0$ --> pure Euler - $\psi =1$ --> pure Crank-Nicolson - Euler: transient first order, bounded - localEuler - SLTS - steadyState: steady simulations (simpleFoam) # Convective Terms - upwind: first order - linearUpwind: second order, bounded - linearUpwindV: second order, bounded, for vector fields - linear: second order, unbounded - limitedLinear: second order, bounded, more stable than linear - recommended for LES # Gradient Terms - edgeCellsLeastSquares - fourth - Gauss - leastSquares - pointCellsLeastSquares Syntax: $\text{grad(U)}\quad\text{Gauss}\quad\text{linear};$ # Laplacian Terms - corrected - for meshes with grading and non-orthogonality - faceCorrected - limited - linearFit - orthogonal - mainly limited to perfect hex meshes with no grading - quadraticFit - uncorrected - for meshes with very low non-orthogonality - more diffusive than limited and corrected # Recommended Setup ```c++ ddtSchemes { default CrankNicolson 0; } gradSchemes { default cellLimited Gauss linear 0.5; grad(U) cellLimited Gauss linear 1; } divSchemes { default none; div(phi,U) Gauss linearUpwindV grad(U); div(phi,omega) Gauss linearUpwind default; div(phi,k) Gauss linearUpwind default; div((nuEff*dev(T(grad(U))))) Gauss linear; } laplacianSchemes { default Gauss linear limited 1; } interpolationSchemes { default linear; } snGradSchemes { default limited 1; } ``` - Very similar to setup of commercial solvers - Second order accurate, fully bounded - Should change blending factor of **laplacianSchemes** and **snGradSchemes** based on mesh quality - Use a CFL number < 2 to minimize time diffusion