# Definition
Newton's 2<sup>nd</sup> law ($\vec{F} = m\vec{a}$) for a fluid
Assuming Newtonian fluid:
$
\underbrace{\frac{\partial \vec{u}}{\partial t}}_{\text{unsteady}}+\underbrace{(\vec{u}\cdot\nabla)\vec{u}}_{\text{convective acceleration}}=\overbrace{-\nabla p}^{\text{pressure gradient}}+\overbrace{\nu\nabla^2\vec{u}}^{\text{viscous diffusion}}
$
Where:
$
\begin{align}
\vec{u} &:\text{any vector field (usually velocity)}
\end{align}
$
Euler equation, assumes incompressible ($\rho =$ constant), inviscid flow ($\nu = 0$):
$\frac{\partial \vec{u}}{\partial t}+(\vec{u}\cdot\nabla)\vec{u}=-\nabla p
$
May be written with material derivative:
$
\rho\frac{D\vec{u}}{Dt}=-\nabla p+\mu\nabla^2\vec{u}
$
# Differential Form
## Conservation of Mass
For a *system*:
$
\frac{Dm_{sys}}{Dt}=0
$
To extend this to a *control volume* we use the [[Reynolds Transport Theorem]]:
$
\frac{\partial}{\partial t}\int_{CV}\rho dV+\int_{CS}\rho (\vec{u}\cdot\vec{n})dA=0
$
Considering a small element $dxdydz$:
$
\frac{\partial}{\partial t}\int_{CV}\rho dV=\frac{\partial\rho}{\partial t}dxdydz
$
Net flux in $x$:
$
\frac{\partial}{\partial x}(\rho u)dxdydz
$
Substituting into RTT:
$
\frac{\partial\rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0
$
Rewritten as:
$
\frac{\partial\rho}{\partial t}+\nabla\cdot\rho\vec{u}=0
$