Solution method for [[Partial Differential Equations (PDEs)|PDEs]]
Can be performed on ***separable*** equations:
$
F(y,x)=M(y)\,N(x)
$
$F(y,x)$ can be separated into a function of $x$ alone and a function of $y$ alone.
Separate variables into terms:
$
\frac{1}{M(y)}\frac{dy}{dx}=N(x)
$
Then integrate:
$
\int\frac{1}{M(y)}\frac{dy}{\cancel{dx}}\,\cancel{dx}=\int N(x)\,dx
$
$
\int\frac{1}{M(y)}dy=\int N(x)\,dx
$
# Example
Separate variables into separate terms:
$
\begin{align}
\frac{dy}{dt}+2ty&=0\\
\frac{1}{y}\frac{dy}{dt}+2t&=0
\end{align}
$
Then integrate:
$
\begin{align}
\int\frac{1}{y}\frac{dy}{dt}+2t\,dt&=\int0\,dt\\
\int\frac{1}{y}\frac{dy}{dt}\,dt+\int2t\,dt&=\int0\,dt\\
\int\frac{1}{y}\frac{dy}{\cancel{dt}}\,\cancel{dt}+t^2+c_1&=c_2
\end{align}
$
$
\begin{gather}
\ln|y|=\hat{c}-t^2\\
|y|=e^{\hat{c}-t^2}=e^\hat{c}e^{-t^2}
\end{gather}
$