Given a closed region, the sum of "microscopic" circulation within the region $D$ is equal to the macroscopic circulation of the region as a whole $C$:
$
\begin{gather}
\int_C\boldsymbol{F}\cdot d\boldsymbol{s}=\iint_D(\nabla\times\boldsymbol{F})\cdot\hat{\boldsymbol{k}}\,dA\\
(\nabla\times\boldsymbol{F})\cdot\hat{\boldsymbol{k}}=\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\\
\int_C\boldsymbol{F}\cdot d\boldsymbol{s}=\iint_D\Big(\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\Big)\,dA
\end{gather}
$