- More general, used for [[Gaussian Mixture Models]] in this note
- assume parameters known to find responsibilities
- Differentiate the likelihood function wrt to means, set to zero
- Likelihood function:
$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^N\ln\bigg\{\sum_{k=1}^K\pi_k\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\bigg\}$
- Differentiated, set to zero:
$\begin{align}
0 &= \sum_{n=1}^N\frac{\pi_k\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k}{\sum_{j=1}^K\pi_j\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_j,\boldsymbol{\Sigma}_j)}\boldsymbol{\Sigma}_k^{-1}(\mathbf{x}_n-\boldsymbol{\mu}_k\\
&= \sum_{n=1}^N\gamma(z_{nk})\boldsymbol{\Sigma}_k^{-1}(\mathbf{x}_n-\boldsymbol{\mu}_k)\end{align}$
- assume we can calculate $\gamma(z_{nk})$
- can obtain mixture means:
$\boldsymbol{\mu}_k = \frac{1}{N_k}\sum_{n=1}^N\gamma(z_{nk})\mathbf{x}_n$
- effective number of points for each component *N<sub>k</sub>*
$N_k = \sum_{n=1}^N\gamma(z_{nk})$
- Estimating covariance
$\boldsymbol{\Sigma}_k = \frac{1}{N_k}\sum_{n=1}^N\gamma(z_{nk}(\mathbf{x_n}-\boldsymbol{\mu}_k)(\mathbf{x_n}-\boldsymbol{\mu}_k)^T$
- mixing coefficients
$\pi_k = \frac{N_k}{N}$
- iteration
- make initial guess of parameters
- alternate between:
- E-step: evaluate responsibilities $\gamma_{nk}$
- M-step: update parameters using results