- More general, used for [[Gaussian Mixture Models]] in this note - assume parameters known to find responsibilities - Differentiate the likelihood function wrt to means, set to zero - Likelihood function: $\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^N\ln\bigg\{\sum_{k=1}^K\pi_k\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\bigg\}$ - Differentiated, set to zero: $\begin{align} 0 &= \sum_{n=1}^N\frac{\pi_k\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k}{\sum_{j=1}^K\pi_j\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_j,\boldsymbol{\Sigma}_j)}\boldsymbol{\Sigma}_k^{-1}(\mathbf{x}_n-\boldsymbol{\mu}_k\\ &= \sum_{n=1}^N\gamma(z_{nk})\boldsymbol{\Sigma}_k^{-1}(\mathbf{x}_n-\boldsymbol{\mu}_k)\end{align}$ - assume we can calculate $\gamma(z_{nk})$ - can obtain mixture means: $\boldsymbol{\mu}_k = \frac{1}{N_k}\sum_{n=1}^N\gamma(z_{nk})\mathbf{x}_n$ - effective number of points for each component *N<sub>k</sub>* $N_k = \sum_{n=1}^N\gamma(z_{nk})$ - Estimating covariance $\boldsymbol{\Sigma}_k = \frac{1}{N_k}\sum_{n=1}^N\gamma(z_{nk}(\mathbf{x_n}-\boldsymbol{\mu}_k)(\mathbf{x_n}-\boldsymbol{\mu}_k)^T$ - mixing coefficients $\pi_k = \frac{N_k}{N}$ - iteration - make initial guess of parameters - alternate between: - E-step: evaluate responsibilities $\gamma_{nk}$ - M-step: update parameters using results