Continuity is solved for each phase:
$
\frac{\partial(r_q\rho_q)}{\partial t}+\nabla\cdot (r_q\rho_q\boldsymbol{U}_q)=\sum_{p=1}^N(\dot{m}_{pq}-\dot{m}_{qp})
$
Where:
$
\begin{align}
p&:\text{primary phase} \\
q&:\text{secondary phase} \\
r&:\text{phase volume fraction} \\
\end{align}
$
Mass transfer between phases
[[Interface Capturing]]
[[Eulerian multiphase model]]
Momentum and energy equation solved for each phase
Phases share common pressure field
$
\frac{\partial(r_q\rho_q\boldsymbol{U}_q)}{\partial t}+\nabla\cdot(r_q\rho_q\boldsymbol{U}_q\boldsymbol{U}_q)=-r_q\nabla p+\nabla\cdot\boldsymbol{\tau}_q+\overbrace{\sum_{p=1}^N(\boldsymbol{D_pq+\dot{m}_{pq}\boldsymbol{U}_{pq}-\dot{m}_{qp}\boldsymbol{U}_{qp}})}^\text{Momentum transfer between phases}
$
Each cell centroid will have N velocity fields for each phase
Interphase momentum transfer will be dominated by [[Interphase Drag]]