Conservation of mass for a system:
$
\frac{Dm_{sys}}{Dt}=0
$
Rate of change of mass within an enclosed system is equal to zero
$
\underbrace{...}_{\substack{\text{Some long text that} \\ \text{should be multiline}}}
$
For a control volume:
$
\underbrace{\frac{\partial}{\partial t}\int_{CV}\rho dV}_{\substack{\text{rate of change of mass} \\ \text{in control volume}}}+\underbrace{\int_{CS}\rho\vec{V}\cdot\hat{n}\,dA}_{\substack{\text{mass flux across} \\ \text{control surface}}}=0
$
Consider an infinitesimal fluid element with sides $dx$, $dy$, and $dz$, with a density $\rho$ located at the element centroid.
Per unit volume the amount of mass leaving the element in the $x$ direction is:
$
\left[\rho u+\frac{\partial (\rho u)}{\partial x}\frac{dx}{2}\right]dydz
$
Similarly, the amount of mass entering the element in the $x$ direction is:
$
\left[\rho u-\frac{\partial(\rho u)}{\partial x}\frac{dx}{2}\right]dydz
$
Therefore the net mass flux is:
$
\frac{\partial(\rho u)}{\partial x}dxdydz
$
This is extended to the $y$ and $z$ directions:
$
\frac{\partial(\rho v)}{\partial y}dxdydz
$
$
\frac{\partial(\rho w)}{\partial z}dxdydz
$