Given a loan amount *L* and interest rate *r* $ x(0)=L $ Compound yearly: $ x(1)=(1+r)L=(1+r)\,x(0) $ Compound monthly: $ x(1)=\left(1+\frac{r}{12}\right)^{12}x(0) $ $ \left(1+\frac{r}{12}\right>^{12}1+r $ As compound period approaches zero: $ \begin{align} x(1)&=\lim_{n\rightarrow\infty}\left(1+\frac{r}{n}\right)^nx(0)\\ &= \boxed{e^rx(0)} \end{align} $