# Intro to Transport Equations
## Navier-Stokes
Newton’s 2nd Law
For constant mass:
$
\boldsymbol{F}=m\boldsymbol{a} \longrightarrow \boldsymbol{F}=m\frac{d\boldsymbol{v}}{dt}
$
For varying mass:
$
\boldsymbol{F}=\frac{d(m\boldsymbol{v})}{dt}
$
$
F_x=\frac{d(mv_x)}{dt} \quad F_y=\frac{d(mv_y)}{dt} \quad F_z=\frac{d(mv_z)}{dt}
$
Formulated for a solid body, need to use [[Navier-Stokes equations]] for a fluid volume:
$
\boldsymbol{F}=\frac{D(m\boldsymbol{U})}{Dt}
$
where $\frac{D}{Dt}$ is the [[Material Derivative|material derivative]].
It is standard practice to divide both sides by the fluid volume:
$
\boldsymbol{f}=\frac{D(\rho\boldsymbol{U})}{Dt}
$
where $\rho$ is the fluid density and $\boldsymbol{f}$ is the sum of external forces per unit volume acting on the fluid.
$
\frac{D}{Dt}=\frac{\partial}{\partial t}+\boldsymbol{U}\cdot\nabla
$
$
\boldsymbol{f}=\frac{\partial}{\partial t}(\rho\boldsymbol{U})+\boldsymbol{U}\cdot\nabla(\rho\boldsymbol{U})
$
$
\boldsymbol{f}=\frac{\partial(\rho\boldsymbol{U})}{\partial t}+\nabla\cdot(\rho\boldsymbol{UU})
$
### External Forces
$
\frac{\partial(\rho\boldsymbol{U})}{\partial t}+\nabla\cdot(\rho\boldsymbol{UU})=\underbrace{-\nabla p}_\text{pressure}+\underbrace{\nabla\cdot\boldsymbol{\tau}}_\text{viscous shear}+\underbrace{\rho\boldsymbol{g}}_\text{gravity}
$
Minus sign in front of pressure gradient because fluid accelerates in direction of decreasing pressure
Difficult because LHS is non-linear in velocity $\boldsymbol{U}$
## [[]]
Thermal energy transport:[[Transport equations]]
Thermal energy transport:
$
\frac{\partial(\rho c_pT)}{\partial t}+\underbrace{\nabla\cdot(\rho c_p\boldsymbol{U}T)}_\text{convection}=\underbrace{\nabla\cdot(k\nabla T)}_\text{diffusion}
+S
$
where $c_p$ is specific heat capacity, $k$ is thermal conductivity, and $S$ is a heat source.
Transport is mainly driven by [[Convection|convection]] and [[Diffusion|diffusion]]. Radiation is neglected here.
Expanding the
Expanding the diffusion term:
$
\nabla\cdot(k\nabla T)=\frac{\partial}{\partial x}\left(k\frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right)
$
Expanding the convection term:
$
\nabla\cdot(\rho c_p \boldsymbol{U} T)=\frac{\partial}{\partial x}(\rho c_p U_x T)+\frac{\partial}{\partial y}(\rho c_p U_y T)+\frac{\partial}{\partial z}(\rho c_p U_z T)
$
Concentration transport:
$
\frac{\partial (\rho C)}{\partial t}+\nabla\cdot(\rho \boldsymbol{U}C)=\nabla \cdot(D\nabla C)+S
$
where $C$ is the concentration of a species and $D$ is the diffusivity of the species.
# 1D Diffusion Equation
For thermal energy:
$
\frac{\partial(\rho c_pT)}{\partial t}+\nabla\cdot(\rho c_p\boldsymbol{U}T)=\nabla\cdot(k\nabla T)
+S
$
We neglect the unsteady term and convection:
$
\cancel{\frac{\partial(\rho c_pT)}{\partial t}}+\cancel{\nabla\cdot(\rho c_p\boldsymbol{U}T)}=\nabla\cdot(k\nabla T)
+S
$