# Definitions and Basic Concepts. ## Introduction - Basic field and circuit concepts ## Electric Charge and Coulomb's Law [[Coulomb's Law]] ## [[Electric Current]]asdfjkl;asdfjkiol;asdfjiko ![Google](google.com) - Symbol $I$ - unit of *amperes* ($A$) ### Direct Current (DC) - unidirectional transfer of electrons through a conductor ## [[Voltage]] - Symbol $V$ - unit of *volts* ($V$) ## [[Power and Energy]] ### Energy $ U = QV\quad(\text{J}) $ ### Power $ P = \frac{dU}{dt}=V\frac{dQ}{dt}=VI\quad(\text{W}) $ ## Units, Dimensions, and Constants | Quantity | Symbol | Dimensions | SI Unit | | ------------------------ | ---------- | ------------------------------------------------------------------------------------------------------ | ----------------------------------------- | | Electric charge | $Q$ | $\left[\text{A}\right]\left[\text{T}\right]$ | coulomb, $\text{C}$ | | Electric potential | $V$ | $\left[\text{M}\right]\left[\text{A}\right]^{-1}\left[\text{L}\right]^2\left[\text{T}\right]^{-3}$ | volt, $\text{V}$ | | Current | $I$ | $\left[\text{A}\right]$ | ampere, $\text{A}$ | | Electric field intensity | $E$ | $\left[\text{M}\right]\left[\text{A}\right]^{-1}\left[\text{L}\right]\left[\text{T}\right]^{-3}$ | volt/meter, $\text{V/m}$ | | Electric flux density | $D$ | $\left[\text{A}\right]\left[\text{L}\right]^{-2}\left[\text{T}\right]$ | coulomb/meter<sup>2</sup>, $\text{V/m}^2$ | | Permittivity | $\epsilon$ | $\left[\text{M}\right]^{-1}\left[\text{A}\right]^2\left[\text{L}\right]^{-3}\left[\text{T}\right]^4$ | farad/meter, $\text{F/m}$ | | Resistance | $R$ | $\left[\text{M}\right]\left[\text{A}\right]^{-2}]\left[\text{L}\right]^2\left[\text{T}^{-3}\right]$ | ohm, $\mathrm{\Omega}$ | | Capacitance | $C$ | $\left[\text{M}\right]^{-1}\left[\text{A}\right]^{2}\left[\text{L}\right]^{-2}\left[\text{T}\right]^4$ | farad, $\text{F}$ | | Conductivity | $\sigma$ | $\left[\text{M}\right]^{-1}\left[\text{A}\right]^{2}\left[\text{L}\right]^{-3}\left[\text{T}\right]^3$ | siemens/meter, $\text{S/m}$ | ## Solved Problems ### 1.1 Two point charges of 50 $\mu\text{C}$ are held 1.5 $\text{m}$ apart in free space. What is the force of repulsion between the two charges? > Using Coulomb's law: > $ > F=k\frac{Q_1Q_2}{r^2}=\boxed{9\times10^9\left(\frac{\left(50\times10^{-6}\right)^2}{1.5^2}\right)=10\text{ N}} > $ ### 1.2 Find the electric field intensity 1.5 $\text{m}$ from a 50 $\mu\text{C}$ charge in free space > Definition of electric field intensity: > $ > E=\lim_{Q_2\to0}\frac{F}{Q_2} > $ > Substitute into Coulomb's law: > $ > E=k\frac{Q_1}{r^2}=\boxed{9\times10^9\left(\frac{50\times10^{-6}}{1.5^2}\right)=200\text{ kN/C}=200\text{ kV/m}} > $ ### 1.3 Two point charges $Q_1=50\mu\text{C}$, and $Q_2=25\mu\text{C}$ are separated by a distance of 1 $\text{m}$ in air. At what distance from $Q_1$ will the electric field intensity be zero? # Circuit Elements and Laws ## Circuit Notions Elements: - Resistance - Capacitance - Inductance - Voltage source - Current source Terminology: - circuit/network - interconnection of circuit elements - node - junction of two or more elements ## Element Voltage-Current Relationships Resistors > $v=Ri\qquad i=Gv$ > $G=\frac{1}{R} \quad\left[\text{Siemens (S)}\right]\quad \text{conductance}$ Capacitors > $C=\frac{Q}{V}=\frac{q}{v}$ *Q* - steady state charge *V* - steady state voltage *q* - transient charge *q* - transient voltage $i=\frac{dq}{dt}$ $v=\frac{1}{C}\int i\,dt\qquad\text{or}\qquad i=C\frac{dv}{dt}$ Inductors > $v=L\frac{di}{dt}\qquad\text{or}\qquad i=\frac{1}{L}\int v\,dt$ ## Series and Parallel Circuits Resistance: > $R_\text{series}=\sum_{k=1}^{n}R_k\qquad R_\text{parallel}=\sum_{k=1}^{n}\left(\frac{1}{R_k}\right)^{-1}$ ### [[Voltage Division]] ### [[Current Division]]