[[Differential form of the fluid equations]]
# 1: 1D Linear Convection
$
\frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=0
$
use the following:f
- space-time discretization
- $i$: index of grid in $x$
- $n$: index of grid in $t$
- numerical scheme
- forward difference in $t$
- backward difference in $x$
Write the partial derivatives out using discretized form:
$
\begin{align}
\frac{\partial u}{\partial t}&=\frac{u^{n+1}_i-u^n_i}{\Delta t} \\
\frac{\partial u}{\partial x}&=\frac{u^{n}_i-u^n_{i-1}}{\Delta x}
\end{align}
$
Plug into the original equation:
$
\frac{u^{n+1}_i-u^n_i}{\Delta t}+c\frac{u^{n}_i-u^n_{i-1}}{\Delta x}=0
$
Rearrange for $u^{n+1}_i$ (velocity at the current index in $x$, at the next time step):
$
u^{n+1}_i=u^n_i-c\frac{\Delta t}{\Delta x}u^n_i-u^n_{i-1}
$
Add initial conditions:
$
u=\begin{cases}
2&0.5\le x \le 1 \\
1&\text{everywhere else}
\end{cases}
$
Boundary conditions:
$
u=1 \quad @\quad x=0,2
$